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Active Learning

Outline & Tentative Schedule
▶ 09:00 – 10:30 Lecture

▶ Opening
▶ Evaluating
▶ Broadening the View

▶ 10:45 – 11:45 Practical
▶ 11:45 – 12:15 Discussion

Getting Ready
▶ Have scikit-learn and scitkit activeml installed:

1 pip install scikit -learn
2 pip install scikit -activeml
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Motivation: Exemplary Applications

Diagnosis Support System
▶ Objective: Clinical Image Classification
▶ Input: Images, . . .
▶ Output: Class (e.g., benign vs malignant)

▶ Labelling requires medical expert, lab tests, . . .

Brain Computer Interfaces / Intelligent Prosthesis
▶ Objective: Predict the action the user desires
▶ Input: Sensors / EEG patterns
▶ Output: Desired action

▶ (Re-)Calibration is tedious
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Motivation: (Supervised) Machine Learning
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Supervised Learning

f : x︸︷︷︸
feature

→ y︸︷︷︸
label

▶ Collect training data
from previous customers

▶ Train and test on that data
▶ Deploy in production

predictions on new customers
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Motivation: Data / Supervision Challenge

▶ Key to successful supervised models:

Sufficient high-quality labelled training data

▶ Labelling often requires querying oracles, e.g.,
▶ human domain experts
▶ tedious-to-perform experiments
▶ expensive-to-acquire third-party data

▶ How to build an equally good model with less data?
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Active Learning: When & Why?

Motivation
▶ lot’s of (automatically) generated data, but
▶ (human) annotation capacities remain limited

Context of Active Learning
▶ unlabelled data U is abundant
▶ annotation is costly (paucity of labelled data L)
▶ control over label selection process

Aim of Active Learning
▶ select the most valuable (informative) instances for labelling
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Active Learning: How?

Data Collection Process for Active Labelling
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Active Learning: Illustrative Example

Which instance would you select?
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Active Learning: Selection Criteria

What factors influence the decision?
▶ Density (improve the classifier, where decisions

are important)
▶ Decision boundary (be specific, where change

is expected)
▶ Label density (explore unexplored regions)
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Influence Factors:

▶ Decision boundary: main criterion for decision making (prediction)
▶ Proxy: posterior probability, margin, etc.

▶ Reliability of decision: identifies how sure one can be that the decision is already
correct
▶ Proxy: classifier ensemble diversity, labels distribution

▶ Influence: the influence of one instance for the complete dataset
▶ Proxy: density, simulation

▶ Class distribution: are classes equally often represented
▶ Proxy: class prior
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Active Learning Strategies: Overview

▶ Uncertainty Sampling:
selects instances near the decision boundary

▶ Query by Committee:
minimizes classifier variance

▶ Expected Error Reduction:
simulates acquisition of each candidate and each possible outcome

▶ Probabilistic Active Learning:
calculates expected performance locally

▶ ... (there exist many more methods)
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Random Sampling skip

▶ Also called passive sampling
▶ Selects instances randomly for labeling
▶ Competitive approach
▶ Standard baseline
▶ Free of heuristics
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Uncertainty Sampling [Cohn et al., 1990] skip
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Feature x1

Idea
Select those instances where we are least certain
about the label

Approach:
▶ 3 labels preselected
▶ Linear classifier
▶ Use distance to the decision boundary as

uncertainty measure
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Discussion of Uncertainty Sampling

⊕ easy to implement

⊕ fast

⊖ no exploration (often combined with random sampling)

⊖ impact not considered (density weighted extensions exist)

⊖ problem with complex structures (performance can be even worse than random)

Influence factors: Decision boundary
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Ensemble-Based Strategy [Seung et al., 1992] skip
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Feature x1

        Classifier 1

       
 Classifie

r 2

    Disagreement

Idea
Use disagreement between base classifiers

Approach
1. Get an initial set of labels

2. Split that set into (overlapping) subsets

3. On each subset, train a different base-classifier

4. Repeat until stop

5. On each unlabeled instance do

6. Apply all base-classifiers

7. Request label, if base-classifiers disagree

8. Update all base-classifiers

9. Go to step 4
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Discussion of QbC

⊕ applicable to every classifier (even discriminative ones)

⊖ need more labels as some are hidden for some classifiers

⊖ training of multiple classifiers

Influence factors: Decision boundary, Reliability of decision
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Expected Error Reduction [Roy and McCallum, 2001] skip

▶ Simulates the acquisition of each label candidate and each possible outcome
(class)

▶ Calculates the generalization error of the simulated new model
▶ Chooses the label with lowest generalization error

x∗ = argminx

∑
i∈{1,...,C}

Pθ(yi | x)

 ∑
x′∈U

1 − P
θ+(x,yi )

(ŷ | x ′)



18 / 67



Discussion of Expected Error Reduction

⊕ decision theoretic model

⊖ long execution time (closed form solutions for specific classifiers, approximations
for speed up)

Influence factors: Decision boundary, Reliability of decision, Impact
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Exemplary AL Situations
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▶ a label’s value depends
on the label information
in its neighbourhood

▶ label information
▶ number of labels
▶ share of classes

▶ uncertainty sampling ignores
the number of similar labels

OPAL
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Probabilistic Active Learning [Krempl et al., 2015b]

▶ Models the true posterior as being Beta-distributed
▶ variance of posterior is correlated with the number of local observations
▶ thereby omit the complex simulation of expected error reduction

▶ Calculates the performance improvement of the model

GOPAL(ls,m) =
1
m

· Ep
[
Ek

[
gainp(ls, k,m)

] ]
with:
▶ ls = (n, p̂): Label statistics
▶ p: True posterior at candidate’s position
▶ m: Number of candidates to be acquired (budget)
▶ k: Number of candidates with positive label realisations

▶ with performance gain as difference between future and current performance:

gainp(ls, k,m) = perfp

(
np̂ + k

n + m

)
− perfp(p̂)
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Probabilistic Active Learning [Krempl et al., 2015b] skip
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▶ Models the true posterior as being
Beta-distributed
▶ variance of posterior is correlated with

the number of local observations
▶ thereby omit the complex simulation of

expected error reduction

▶ Calculates the performance improvement
of the model
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Discussion of Probabilistic Active Learning

⊕ decision theoretic model

⊕ fast w.r.t. expected error reduction

⊖ local number of labels required

Influence factors: Decision boundary, Reliability of decision, Impact
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Active Learning Strategies: Overview

▶ Uncertainty Sampling:
selects instances near the decision boundary

▶ Query by Committee:
minimizes classifier variance

▶ Expected Error Reduction:
simulates acquisition of each candidate and each possible outcome

▶ Probabilistic Active Learning:
calculates expected performance locally

▶ ... (there exist many more methods)
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Evaluation: Objectives & Criteria

Main Objectives
▶ Maximise classification performance
▶ Minimise labelling costs / label requests

Criteria
▶ Performance of classifier, depending on
▶ Number of acquired labels / spent budget

▶ Exploration of data space?
▶ Explainability?
▶ Query runtime?
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AL Strategies - Evaluation: Learning Curve

AL 1
AL 2
AL 3

number of labels

pe
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Plots
▶ (classification) performance versus

▶ used budget / number of label requests

Expected behaviour:
▶ Identical performance for budget = 0
▶ Performance increases with number of labels
▶ Convergence: after ∞ label requests,

all strategies should have the same
performance

Caveat
Always compare using same classifier and data
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How to interpret the results of a learning curve?

▶ Converging as fast as possible
▶ Converging to the highest overall value

AL 1
AL 2
AL 3

number of labels

pe
rfo

rm
an

ce
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Aggregated Measures

How to summarize results from a learning curve?
▶ Table at specific time points (early, mid, late)
▶ Area under the learning curve, mean (depends on stopping point)

[Culver et al., 2006]
▶ Data Utilisation Rate [Reitmaier and Sick, 2013]
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Area Under the Learning Curve (AULC)[Culver et al., 2006]
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Area Under the
Learning Curve

▶ AULC above that of a random-sampling learner
▶ Calculated for maximum budget, thus sensitive to budget
▶ Negative value indicates worse-than-random performance
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Data Utilization Rate (DUR) [Reitmaier and Sick, 2013]
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▶ The minimum number of samples needed to reach a target accuracy,
divided by the number of samples needed by a random sampling learner

▶ Indication of efficiency for selecting of data
▶ Sensitive to choice of target accuracy,

ignores performance changes at other points
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How to evaluate statistical significance?

▶ Which values to compare?
▶ not across label acquisitions (highly correlated) but across multiple repetitions
▶ at which point in time?

▶ Statistical tests
▶ t-Test cmp. mean (assumes that mean is normal distributed)
▶ Wilcoxon Signed Rank Test cmp. tendency (parameter-free test)
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How many repetitions are required?

Comparison of algorithms using 5-fold cross validation
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Initialization of Instance Selection

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

▶ Cannot be class-specific, as labels are unknown
▶ Often random (How to tune the number of random samples?)
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Parameter Tuning

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

1. Determine hyperparameter and fix them across selection methods

2. How to tune without labels?
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Parameter Tuning

▶ tuning instances should be considered in the number of acquisitions
▶ how many instances should be used for tuning? (many classifiers are sensitive to

the number of instances)
▶ normally, no instances for supervised parameter tuning available
▶ tuning parallel to sampling may be complicated

36 / 67



Evaluation Challenges

Real applications oft are more challenging
▶ Often highly specialized (hard to transfer approaches to related domains)
▶ Imperfect labelers (experts might be wrong)
▶ In real-world only one shot (mean results are not representative)
▶ Labels are not always available (in time and space)
▶ Performance guarantees (cmp. random sampling)
▶ Assess online performance of an actively trained classifier
▶ Different costs for different annotations or classes
▶ Ground truth might not be available
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Evaluation: Recommendations 1

▶ Use exactly the same robust classifier for every AL method
when comparing and try to sync the parameters of these classifiers.

▶ Capture the effect of different AL methods on multiple datasets
using at least 50 repetitions.

▶ Start with an initially unlabeled set.
If you need initial training instances, sample randomly and explain when to stop.

▶ Use either an apriori defined stopping criterion or enough label acquisitions
(sample until convergence).

▶ Show learning curves (incl. quartiles) with reasonable performance measures.
▶ Present pairwise differences in terms of significance and effect size

(Wilcoxon signed rank test).

1See [Kottke et al., 2017].
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Beyond pool-based scenarios
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Beyond pool-based scenarios

Aims
▶ Broadening view on active learning
▶ Overview on different variants of the active learning task
▶ Pointers to surveys / key papers for each variant
▶ Challenges/caveats and exemplary approaches
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Active Learning: Scope

pool-based

stream-based

query synthesis

inductive

transductive

active learning

machine teaching

of labels
(labelling)

of features 
(feature acquistion)

of instances
(class selection)

of classification 
features / instances

processing
scenarios

learning
objective

initiation of 
interaction

selected 
information
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Processing Scenarios

pool-based

stream-based

query synthesis

inductive

transductive

active learning

machine teaching

of labels
(labelling)

of features 
(feature acquistion)

of instances
(class selection)

of classification 
features / instances

processing
scenarios
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initiation of 
interaction

selected 
information
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Processing Scenarios: Query Synthesis

 Features Labels
z1 ... ... ...

Labelled training 
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Train ML 
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Query label y3

from oracle

 Feature vector

Synthesise a 
new instance:

z3 ... ... ...

Update training set

Query Synthesis Scenario
▶ No pool
▶ Ad hoc generation of queried instances
▶ Membership query: Query class membership

of generated instance
▶ See [Angluin, 2004] (introduction)

▶ Challenge: creating meaningfull instances
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Processing Scenarios: Query Synthesis
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Select nearest 
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Hybrid Query Synthesis/Pool Scenario
▶ Aim: creating meaningfull instances
▶ Combination with pool-based AL:

[Wang et al., 2015]
▶ given a (too) large pool of unlabelled data
▶ synthesize instance close to decision boundary
▶ select the nearest neighbouring real instance
▶ faster than pool-based AL, meaningful queries

45 / 67



Processing Scenarios: Stream

Processed
Data

Time T

Stream-Based Selective Sampling Scenario
▶ Sequential arrival, no repeated access
▶ Online active learning as synonym

▶ No/few initial labels
▶ Possibly infinite number of instances
▶ Efficient processing and limited storage

▶ Non-stationary distributions (concept drift)
▶ Adaptation (forgetting) needed

▶ “Big Data” is often streaming data
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Processing Scenarios: Stream

no
Processed data

Time T
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yes

Train ML 
model

Query label
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Get next
instance

Stream-Based Selective Sampling Scenario
▶ Decide upon arrival of new instance

whether to query that instance’s label or not
▶ Update classifier if label was queried,

otherwise skip
▶ Continue for as long as new instances arrive
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Processing Scenarios: Stream

no
Processed data

Time T

- +
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++
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yes

Train ML 
model

Query label
from oracle

Get next
instance

Recommended literature
▶ [Cacciarelli and Kulahci, 2023] (survey)
▶ [Zliobaitė et al., 2013] (concept drift)
▶ [Kottke et al., 2015] (budget management)
▶ [Pham et al., 2022] (verification latency)
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Processing Scenarios: Stream

Time T

Old Chunk New Chunk Future Chunk

Time T

Instances arrive one-by-one

Chunk-based processing

versus

Instance-wise processing
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Processing Scenarios: Stream

Time T

Old Chunk New Chunk Future Chunk

Time T

Instances arrive one-by-one

Chunk-based processing

▶ Split data chronologically into chunks
▶ AL on each chunk is similar to pool-based AL
▶ Often, ensemble with one new classfier per

chunk is trained a

▶ Alernative: Clustering-based approaches b

aE.g., [Ryu et al., 2012, Zhu et al., 2010, Zhu et al., 2007]
bE.g., [Krempl et al., 2015a, Ienco et al., 2013]
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Processing Scenarios: Stream

Time T

Old Chunk New Chunk Future Chunk

Time T

Instances arrive one-by-one

Instance-wise processing

▶ Instances arrive one-by-one
▶ Decision to query or not must be taken at once
▶ Budget: Trade-off between spatial and

temporal usefulness a

aSee [Kottke et al., 2015]
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Active Learning: Learning Objective

pool-based

stream-based

query synthesis

inductive

transductive

active learning

machine teaching
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(class selection)

of classification 
features / instances
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initiation of 
interaction

selected 
information
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Learning Objective: Inductive vs. Transductive skip

Inductive
▶ Training and test data are different
▶ Objective: Generalising to unseen data

Transductive
▶ Same data used for training needs to be classified
▶ Objective: Mastering given (training) data set
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Learning Objective: Inductive vs. Transductive skip

Particularities of Transductive AL
▶ Evaluation data is known beforehand, as test and train set are identical, no

need to build a generalised model
▶ Excluding instances from being predicted by the classifier is possible by querying

them from the oracle

Implications

▶ Ignore high aleatoric uncertainty for inductive setting
▶ Remove such instances by labelling for transductive setting
▶ See [Kottke et al., 2022]
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Learning Objective: Inductive vs. Transductive

Transductive Gain

p

p

x1

x 2

Utility for inductive gain

x1

x 2

Utility for candidate gain

unlabeled instance of red class

unlabeled instance of blue class

usefulness estimation

highlow

decision boundary

labeled instance

labeled instance

Figure: Transductive gain as sum of the utilities of inductive gain (left),
and of candidate gain (right) [Kottke et al., 2022, Fig.1]
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Active Learning: Initiatior of Interaction

pool-based

stream-based

query synthesis

inductive
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active learning

machine teaching
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of features 
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(class selection)
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features / instances

processing
scenarios

learning
objective

initiation of 
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Initiatior of Interaction: Machine (Active Learning)
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Active Learning
▶ Machine is proactive in the interaction
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Initiatior of Interaction: Human (Machine Teaching)
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+

Decide on new
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Machine Teaching
▶ Human is proactive in the interaction
▶ No direct knowledge transfer between

teacher (human) and learner (machine)

▶ Aim is designing an optimal training set

▶ See [Tegen, 2022] (PhD thesis) and
[Tegen et al., 2021] (review)
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Initiatior of Interaction: Human (Machine Teaching)
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Triggers for human to add instances to training set
might be
▶ Trigger by error
▶ Trigger by state change
▶ Trigger by time
▶ Trigger by user factors
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Active Learning: Selected Information

pool-based

stream-based

query synthesis
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active learning
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Question?
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