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Types of learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning



Why unsupervised learning?

• Clustering: expect groups in our data, but were not able to measure 
them 
• potential new subtypes of cancer tissue
• groups of shoppers based on their purchase histories

• We want to summarize features into one feature to use in further 
decisions/analysis 
• subgrouping customers by their spending types 

• Informative way to visualize high-dimensional data
• Reduce dimensionaltiy of the data to visualise them in a 2-D plot



Supervised learning VS Unsupervised

Training set: (x1, y1), (x2,y2)…, (xm,ym) Training set: (x1, x2…, xm)



Supervised learning VS Clustering

Training set: (x1, y1), (x2,y2)…, (xm,ym) Training set: (x1, x2…, xm)
No target/output



Clustering

Find subgroups (clusters) if there are similar examples in the dataset



Applications of clustering

• Recommender systems
• Cluster users with similar viewing habits

• Medical imaging
• Cluster images to find patients with similar medical imaging (MRI, X-ray etc)

• Market segmentation
• Divide consumers based on their spending hapits



k-Means algorithm



K-means

• One of the most popular clustering algorithms
• K-means is an iterative algorithm
• Each data point belongs to the cluster with the nearest mean





K-means

• Step 1: Initialization: Choose the number of clusters K and initialize 
the centroids randomly 

• K = 4



K-means - Step 2
• Step 2: Assign each data point to the nearest centroid based on a 

distance metric (e.g., Euclidean distance).

K = 4



K-means - Step 3

• Step 3: Calculate the new centroids as the mean of all points in the 
cluster.

K = 4



K-means - Step 4

• Step 4: Repeat the 
assignment and update 
clusters until the centroids 
do not change significantly 
or a maximum number of 
iterations is reached



K - means

• Input 
- K (number of clusters)
- Observations (x1, x2, x3, …, xm)

- Labels are not required



K-means algorithm

• Randomly initialize 𝐾 cluster centroids 𝜇!, 𝜇", ⋯ , 𝜇# ∈ ℝ$

Repeat{
 for 𝑖 = 1 to 𝑚
  𝑐(&) ≔ index (from 1 to 𝐾) of cluster centroid 
                                   closest to 𝑥(&)

                                                                   
 for 𝑘 = 1 to 𝐾
   𝜇( 	 ≔ average (mean) of points assigned to cluster 𝑘

}

Cluster assignment step

Centroid update step
Slide credit: Andrew Ng 



The initialization of the 
centroids is random, and 
this can give different 
results on the same 
dataset. 

Random initialization



Random initialization

• The random initialization can lead us to local optimal solution
• To avoid this inconsistency, we can run it 100 times and select the 

best performance among these 100

• Performance?



Random initialization

• Which of those is the best - > measure inertia (or also called 
distortion cost function)
• The mean square distance between each point and the centroid of its 

cluster
• The lower the value of distortion the better the solution



Choose the number of clusters

• Choose them manually 
with visualization
• But it is not always easy
• No clear answer



Choose k with elbow method

• Run K-means for different values of k
• For each k, calculate the distortion cost function
• Create a plot with the number of clusters k on the x-axis and the 

distortion on the y-axis.
• Distortion typically decreases as k increases 
• Adding more clusters reduces the distance from each point to its assigned 

centroid



Elbow method

• Distortion drops quickly when we increase the number of clusters 
until a certain point, and then it slows down and decreases more and 
more slowly.
• Identify the "Elbow": where the rate of decrease sharply slows down.
• The optimal k is typically at the elbow; adding more clusters beyond 

this point provides does not reduce distortion significantly





Silhouette score

• Graphs are not always clear. Sometimes the curve decreases very 
smoothly. 
• In this case, you should try the Silhouette score. 
• The silhouette value is a measure of how similar an object is to its 

own cluster (cohesion) compared to other clusters (separation). 
• The silhouette ranges from −1 to +1, where a high value indicates that 

the object is well matched to its own cluster and poorly matched to 
neighboring clusters.



Silhouette score
the mean distance to the 

instances of the next 
closest cluster.

mean distance to the 
other instances in the 

same cluster 

• To calculate the silhouette score for the whole dataset, you take the mean 
of silhouette scores over all the instances.

• The higher the score, the better, and it does not constantly decrease as inertia. 
• Number of clusters-> the one with the highest silhouette score.  



K-means in Python



Exercise

• Number of observations = 6
• Number of clusters = 2
• Distance metric: Euclidean distance

Step-1: Choose random K points and set as 
cluster centers
C1 = (2,2)
C2 = (3, 3)

Question: Which are going to be the centroids after 
one iteration?
C1 = (?, ?)
C2 = (?, ?)

No X Y

1 1 1

2 2 3

3 1 2

4 3 3

5 2 2

6 3 1



Exercise

• Number of observations = 6
• Number of clusters = 2
• Distance metric: Euclidean distance

Step-1: Choose random K points and set as 
cluster centers
C1 = (2,2)
C2 = (3, 3)

Question: Which are going to be the centroids after 
one iteration?
C1 = (1.75, 1.5)
C2 = (2.5, 3)

No X Y

1 1 1

2 2 3

3 1 2

4 3 3

5 2 2

6 3 1



Evaluation of clusters

How to evaluate clustering results
1. Use of external information 
2. Visual exploration 
3. Stability assessment / sensitivity analysis 



External validation

1. External validation 
• Are the clusters associated with external feature 𝑌? 
• “Making unsupervised supervised” 

• Examples: 
• Are my customer segments based on spending associated with the 

demographics of the customers? 



Visual exploration

• Problem: Kind of hard to see already… 
• Wait till you get 1000 variables! 
• New idea: Reduce variables into 2D “manifold” for visualization 
• Popular techniques: PCA, t-SNE, Discriminant Coordinates



Cluster stability

• Three “stabilities”
• How much does clustering change when: 
1. Changing some hyperparameters (distance metric, K, ...) 
2. Changing some observations (bootstrapping, Hennig, 2007)
3. Changing some features 
Check if observations are classified into same cluster across choices



10 minutes break



Hierarchical 
Clustering 



Hierarchical clustering 

• Builds a hierarchy of clusters
• A hierarchy might be more natural to the type of data
• Different users might care about different levels of granularity



Hierarchical clustering 

• Top-down (divisive) 
• Partition data into 2-groups (e.g., 2-means)
• Recursively cluster each group

• Bottom-up (agglomerative)
• Start with every point in its own cluster. 
• Repeatedly merge the “closest” two clusters 
• Different definitions of “closest” give different algorithms. 



Hierarchical clustering 



Bottom-up (agglomerative)

• Compute the distance matrix between the input data points
• Let each cluster be a point
• Repeat:
• Merge the two closest clusters
• Update the distance matrix

• Until only one cluster remains



Bottom-up (agglomerative)
• Compute the distance matrix between the input data points
• Let each cluster be a point
• Repeat:

• Merge the two closest clusters
• Update the distance matrix

• Until only one cluster remains

• Distance matrix: Manhattan, Euclidean
• But we need a distance measure for the clusters (for the merging 

step).



Single linkage

• Have a distance measure on pairs of objects.
• 𝑑 𝑥, 𝑦 : Distance between 𝑥 and 𝑦

• Single linkage:           dist A, B = min
)∈+,-!∈.

	d(x, x′)



Bottom-up (agglomerative)

• Have a distance measure on pairs of objects.
• 𝑑 𝑥, 𝑦 : Distance between 𝑥 and 𝑦

• Complete linkage:     dist A, B = max
)∈+,-!∈.

	d(x, x′)



Bottom-up (agglomerative)

• Have a distance measure on pairs of objects.
• 𝑑 𝑥, 𝑦 : Distance between 𝑥 and 𝑦

• Average linkage:        dist A, B = average
)∈+,-!∈.

	d(x, x′)



Bottom-up (agglomerative)

• Have a distance measure on pairs of objects.
• 𝑑 𝑥, 𝑦 : Distance between 𝑥 and 𝑦

• Centroid linkage:        dist A, B = 	d(mean(A),mean(B))









k-means VS Hierarchical clustering 

• k-means clustering is faster and simpler, but requires choosing the 
number of clusters beforehand and may not capture complex 
structures
• Hierarchical clustering is more flexible and intuitive, but can be 

computationally expensive and sensitive to outliers



Dimensionality 
Reduction



Plot high dimensional data

• Suppose you have data with many dimensions
• How are you going to plot those data?



Dimensionality reduction

• Simplifies models
• Reduces computational cost
• Helps in visualizing high-dimensional data



Principal Component Analysis

• Identifies directions (principal components) that maximize variance
• Projects data onto these new directions (PC components) to reduce 

dimensions while retaining most information of the data



Standarize each feature 



PCA

Find the line that goes through the origins 
and:
1. minimizes the sum of the distances 

from the points to the line
2. Or maximises the distances of the 

projected points on the line to the 
origin





Not linear regression

Linear RegressionPCA



PCA

The line is called PC1 
- PC1 has a slope of 0.25
- For every 1 unit of x1 axis, we go up 0,25 

unit of x2 axis (green arrows)
- Data are mostly spread out on x1 axis
- PC1 is a linear combination of x1 and x2
-> to make PC1, mix 1 unit1 of x1 and 0,25 
units of x2 



PCA

- a2 = b2 + c2  -> a = 1,03
- PC1 is scaled so that its length is 1, so we 

can divide by 1,03
- a = 1, 
- x1 = 1/ 1,03 = 0,97, 
- x2 = 0,25/ 1,03 = 0,3

The one unit vector that consists of 0,97 of 
x1 and 0,3 of x2 is called singular vector or 
eigenvector for PC1
The proportions are called loading scores

a



PC2

• PC2 is the line that is perpendicular to 
PC1 and goes through the origin
• Loading scores for PC2:
• 0.97 for x2
• - 0.3 for x1

• In terms of how the values are 
projected in PC2, x2 is 4 times as 
important as x1



Final PCA plot

• Project the points on PC1 and PC2 and rotatate to PC1 is horizontal (x-
axis) and PC2 is the y-axis



Final PCA plot

• Use the projected points to find the new coordinates



Loadings

• How much each variable contributes 
to each principal component 
(correlation between the original 
variables and the principal 
components)

• High absolute values: the original 
variable strongly influences the 
principal component.



Loadings

• Positive values: the variable and the 
PC are positively correlated

• Negative values: the variable and the 
PC are negatively correlated.

• A negative loading indicates that its 
absence contributes to some degree 
to the principal component



Summary



Unsupervised learning

• Advantages:
• Requires less manual data preparation (i.e., no hand labeling) than supervised 

machine learning.
• Capable of finding previously unknown patterns in data, which is impossible 

with supervised machine learning models.

• Disadvantages:
• Results may be unpredictable or difficult to understand.
• Difficult to measure accuracy or effectiveness due to lack of predefined 

answers during training.



Conclusion: clustering

• Clustering looks for “similar” groups of observations
• k-means is simple but needs to predefine k
• Hierarchical Clustering: no need to predefine the number of clusters. 

Doesn’t work well on vast amounts of data or huge datasets.
• PCA will reduce the dimensionality of your data into principal 

components. Very popular way to visualise high-dimensional data into 
a 2-d plot



Practical 7


