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Welcome to our neural networks day. 

This morning we will look at neural networks 
and deep convolutional neural networks, a 
type of machine learning network whose 
design is inspired by the function of neurons 
in the brain, and the structure of networks 
among these neurons.


Why deep learning?
• Neural networks are a very powerful way to link an input 

state with a desired output state (i.e. machine learning)


• Deep learning is particularly useful in tasks that are:


• Hard/impossible to describe using formal mathematical 
rules


• BUT easy for humans to perform


• Intuitive or automatic


• Simulation of neural computation
2

Deep learning tasks

3

Image processing

Game opponents in complex games

Natural language processing

Simulation of biological neural systems



Deep learning approach

• Learn from experience (machine learning)


• Process inputs through a hierarchy of concepts


• Each concept defined by its relationship to simpler 
concepts


• So, build complicated concepts out of simpler 
concepts
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This is what a human is doing when learning 
about the world

SO the main conceptual inspiration for deep 
learning is the brain. As we will see, the design of 
deep learning systems has also followed the 
function of the brain increasingly closely.

However, artificial neural networks simplify the 
processes involved considerably for  
computational efficiency.

Representations & features
• Machine learning performance depends on the representation of 

the case to be classified


• What information the computer is given about the situation


• Each piece of input information is known as a feature


• The same feature can be represented in different formats


• Often easy to convert between formats


• The chosen format strongly affects the difficulty of the task
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r = √ ( x2 + y2 )

θ = tan-1 ( y / x )


A simple task like this can be solved by choosing 
the right set of features, with minimal learning 
necessary.

However, for many tasks, it is hard to know which 
features or formats of the input are important in 
determining the output.

And these may be high-level features that need to 
be extracted first.

Deep learning aims to determine which formats of 
their representations are optimal for solving their 
task, through experience

Representations in 

deep networks

• Useful features may need to be transformed or extracted first

• So deep networks have multiple representations 

• Each is built from an earlier representation


• This can:

• Transform features to a different format before learning their links to the 

output 

• Extract complex features from simpler features


• Essentially multiple steps in a program

• Each layer can be seen as the computer’s memory state after executing 

a set of instructions

• Deeper networks execute more instructions in sequence


• Just like a computer program, the individual steps are generally very simple

• Complex outcomes emerge from interactions between many simple 

steps 6



Representations in 

deep networks
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Here we can see how this abstract description 
might work in an oversimplified example of object 
recognition.

The first layer just takes the colour of each pixel.

This is transformed to the edge representation in 
the next layer by learning common relationships 
between these pixels.

The edges are then transformed to corners and 
contours by learning relationships between the 
edges.

The next layer finds object parts by learning 
common patterns of corners and contours.

These object parts are then transformed into 
whole object representations by learning which 
patterns of object parts correspond to which 
object type.


We will return to the example of object 
recognition many times

It’s an excellent example of a process that is 
intuitive and automatic, but hard to formalise or 
program.

It is also very useful for computers to do, so we 
can find images on the internet without a human 
labelling their content.

Finally, object recognition is a problem that has 
now been solved, so we can really see how the 
result works.


8

A quick note on notes.

All of these slides will be available online, but you 
will find I use little text on my slides. This works 
better in class, but is hard to study from or refer 
back to.

I deal with this by giving you online slides also 
contain notes with a fairly complete description of 
what I say. This is very easy to make notes on 
and study from. Please note that your other 
lecturers won’t give you such extensive notes.


So please focus of listening and understanding 
rather than taking notes.


You also have quite different backgrounds, and I 
may assume you have some background that you 
don’t. And as a native English speaker I 
sometimes go a little fast.




So please stop me if I go over something too 
quickly or you find you are missing something.


What is a deep network?

• A machine learning network that transforms or 
extracts features using:


• Multiple nonlinear processing units


• Arranged in multiple layers with


• Hierarchical organisation


• Different levels of representation and abstraction
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This is a very broad definition, so we will use an 
example to see what it looks like

The example we will use in the first half of the 
course is object recognition.

This has been a major goal for deep learning in 
recent years, and is now largely solved, so we 
can investigate in depth how this works.

Object recognition may sound like an easy 
problem for computer vision, but…

Object recognition

Why is it so difficult?
10

The identity of any object has little 
relationship to its impression on the 
retina.
Here we see the result of a google image 
search for pictures of cats.
This used Google’s artificial deep network 
trained for object recognition. 
For this network and also for human 
vision, objects can be recognised from 
different viewpoint and sizes, in different 
positions, and with different lighting 
conditions.
Also, examples of the same class of object 
often look very different. 
So we can’t recognise an object directly 
from its impression on the eye or camera 
sensor



The 20th century view of 
object recognition

• Stage 1 builds a 
representation of local 
image features.


• Stage 2 builds a 
representation of larger-
scale shapes and surfaces.


• Stage 3 matches shapes 
and surfaces with stored 
object representations-
recognition.
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Note this is already a multi-layer, hierarchical 
approach
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The 20th century view of 
object recognition

This was essentially the example we looked at 
earlier, here with the input at the bottom.


This has many similarities with a deep 
convolutional neural network, and is a good way 
to start thinking about how they work. 

However, there are important differences between 
deep convolutional networks and what we see 
here.

Most importantly, the 2nd hidden layer is shown 
here to straightforwardly respond to corners and 
contours: straightforward combinations of edges.

Likewise, the 3rd hidden layer is shown to 
respond to object parts that could in turn be 
combinations of corners and contours.


Indeed, many objects are built from parts, so 
simplified parts that we recognise from all 
angles might let us build an object 
viewpoint-independent object 
representation.
However, no one has ever made a program 
that can do this for a large set of different 
objects.

It seems that the features considered in a 
model like this are too human. 
When is a feature a corner and when is it a 
curve? Is there something in between? Can we 
define a corner, edge or surface so rigidly?
Essentially, all of these steps tend to limit the 
network to recognise specific examples, 
rather than generalise to all possible tables, 
which is the goal here.



A deep network for object 
recognition

A machine learning network that transforms or 
extracts features using multiple nonlinear 
processing units, arranged in multiple layers with 
hierarchical organisation and different levels of 
representation and abstraction.13

So we can see this network fulfils all the criteria of 
a deep network.

It takes an input image and transforms its 
features to extract the class of object the image 
contains.

It is arranged in multiple layers, with one feeding 
into the next, forming a hierarchy. This is all much 
like the 20th-century idea.

The first layer represents the image pixels, with 
minimal abstraction, while the last layer captures 
object identity, which is highly abstract for a 
computer system. 


But what happens to get from one to the other is 
very different from the 20th-century view.

The middle network layers do not respond to 
concrete concepts that are easy for us to think 
about, like corners and object parts. Instead they 
respond to whatever transformation of features is 
most beneficial for subsequently determining 
object identity. 

This transformation of features is not easy for a 
human to conceptualise, as we will see.


The last part of this definition is ‘nonlinear 
processing units’. 

But what does nonlinear mean, why is that 
necessary, and how is it achieved here?

Nonlinear functions

Y=A*X+B Y≠A*X+B
(Y is any other function of X)14

In a linear function, the output (Y) of the function 
is simply the input (X) multiplied by a constant (A) 
and then added to another constant (B). The 
multiplier can be positive, negative or zero.

In a nonlinear function, there can be any other 
relationship between X and Y. 

There must still be a relationship, Y is still a 
function of X, i.e. Y changes with X in some 
predictable way.

So we can see that non-linear functions can do a 
lot of things that linear functions can’t.



Why nonlinear functions?
Y = B + A1*X1 + A2*X2 + ... + Ap*Xp
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But in the context of deep networks, there is a 
more important problem with linear functions.

The many layers of a deep network repeatedly 
perform functions on the output of previous 
stages. By doing so, more and more features of 
the input affect the output.

This example, joining together only two inputs, 
gives an idea of the problem linear functions will 
face.

Joining multiple linear functions (by addition or 
multiplication) always results in a linear function 
of those multiple inputs.

A deep network for object 
recognition

A machine learning network that transforms or 
extracts features using multiple nonlinear 
processing units, arranged in multiple layers with 
hierarchical organisation and different levels of 
representation and abstraction.16

In this network, the inputs are the brightnesses of 
each image pixel.

There is no way these can be multiplied and 
summed together to give the likelihood this is an 
image of a tree.

Because, as we have seen, there is remarkably 
little relationship between an object’s identity and 
the image it produces on the camera sensor.

Indeed, any operation that can be done with only 
linear functions of the input can be 
straightforwardly described by formal 
mathematical rules, so is not a good use for deep 
networks.

A machine learning network that transforms or 
extracts features using multiple nonlinear 
processing units, arranged in multiple layers with 
hierarchical organisation and different levels of 
representation and abstraction.17

In our example, we have a complex nonlinear 
function with four operations or processing steps. 
These are filter, threshold, pool and normalise. 

These are very important to understand, so let’s look 
at these steps in turn. 


The output of one operation feeds into the next. The 
repeating sequence of these four operations 
effectively forms the layer. 

The output of ALL these operations together forms 
the input to the next repetition of these operations, 
the next layer.

Note that this is described as a linear-nonlinear 
layer, which may be a little confusing.

The nonlinear function threshold is very important, 
but filter and normalise functions are linear. Pooling is 
also nonlinear, but optional.



The filter/convolve operation
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The filter or convolve operation is perhaps the most 
computationally important.

At the first processing layer, the input is simply the brightness of 
each pixel.

The convolution step looks for a pattern in a group of 
neighbouring pixels that corresponds to the convolution filter. 

For this filter, this would be dark on the left (low numbers) and light 
on the right (high numbers).

In convolution, the weights in this filter are multiplied by a group of 
input pixels with a particular position and the products of these 
values are summed.

The result gives the match between the filter and a small part of 
the input image.

If the source pixels follow this filter pattern (dark on the left, light 
on the right), a high value will result. If the input area is all the 
same brightness, the result will be zero. If the source pixels are 
opposite to the filter (lighter on the left) the result will be negative.

Here, the match is poor: the pixel lightness on the left of the input 
source area is higher than on the right, so the output destination 
pixel gets assigned a low value.

Then, the filter is moved by one pixel in the input image to give a 
value for the next output pixel.

All source positions are multiplied by the filter to fill in all the 
destination pixels. The convolution function is usually 
implemented using a single matrix operation over the whole input 

The filter/convolve operation
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The filter we just used is only one example to illustrate the 
principle. 

In fact, a large set of filters are used in parallel to produce multiple 
maps of where their filter patterns are seen, often called feature 
maps.

Each ‘pixel’ shown in each of these feature maps is no longer a 
pixel in the image, it quantifies the match between the filter and 
that position in the input image. 

This is then the activity of a processing unit or artificial ‘neuron’

Here we see a set of eight larger filters with a range of different 
orientations.

These have been set manually in this example, because we know 
edge detectors with different orientations are an important early 
stage of computer and human vision systems.

The pattern of weights within these filters are actually determined 
by machine learning, though in the first layer the result is an edge 
detector like this.

The size of these filters will also determine the spatial scale of the 
feature we can detect. This size is set manually as a parameter of 
the network layer.


Convolutional network (one layer)

‘Traditional’ (fully connected) neural network

Input layer

Hidden layers

Output layer
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So, how is a convolutional network different from other 
types of neural network?

Here we see a 1-dimensional convolutional network. 
Activation of each upper layer node depends on the 
product of the same filter (on the left) convolved with a 
spatially limited set of lower layer nodes.

In an earlier design, a fully-connected neural net, each 
node in a higher layer is connected to all nodes in the 
previous layer, with no constraint on the spatial spread of 
links between them. Again, the pattern of weights within 
these links is learned.

In a convolutional network, results of convolution with 
different filters are represented in different feature maps. 

But in a fully-connected neural net the input to a higher 
layer node comes from all low nodes in the previous 
layer. There is then no need to test a filter at all positions. 


So instead of mapping an input onto a feature map of 
nodes in the higher layer, each single node in the higher 
layer is a complete analysis of activity in the WHOLE 



lower layer, with no spatial representation at all.

-In other words, a fully-connected network can find any 
pattern in its inputs in one layer.

-A side effect of this is that the number of dimension in 
the input is irrelevant in a fully connected network, so we 
can simply view each network layer as 1-dimensional.

-Adding another layer will all the network to detect 
higher-order patterns: patterns within the patterns that 
are not present in the inputs themselves.

-This gives a lot of flexibility, and I would argue too 
flexibility for a process like object recognition.


In a convolutional network, the constraint on the spatial 
spread of links between layers is particularly useful 
where the input has meaningful spatial relationship 
between neighbouring nodes. 

-The most obvious examples of meaningful spatial 
relationships are in image processing, where the input 
layer units are image pixels and the feature maps each 
give the spatial distribution of the features described by 

The threshold/rectification operation

Y = f(X) = max(0, X)
21

The nonlinearity is introduced by the threshold or 
rectification operation.

The goal of this operation is to only activate the 
output feature map if its value reaches a certain 
level, or threshold.

If we use filters that have a mean of zero, the 
threshold is typically zero.

The threshold/rectification operation

Y = f(X) = max(0, X)

Input X

O
ut

pu
t Y

an activation function using a rectified linear unit (ReLU)
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So, for values below zero in the feature map, after 
convolution, the output of the operation is zero.

For input values above zero, the output equals 
the input.

So this introduces a simple nonlinearity around 
zero.

Other ‘activation functions’ can be used to map 
input to output, but this is the most common in 
deep networks.

It is so common that the operation implementing 
the activation function in deep networks is 
typically just called ReLU, or a rectified linear unit.



The pooling operation
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As a result of the filter operation, the response of 
each unit depends on several neighbouring 
inputs. So the units after filtering respond to a 
certain area of the input image, and the activation 
of neighbouring units will often be similar.

After several filter steps, each integrating inputs 
over an area, each unit will respond very similarly 
to an extensive area of the input.

So neighbouring units are representing very 
similar information.

The pooling operation therefore downsamples the 
units to improve computational efficiency.

The pooling operation
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This pooling operation is typically a simple ‘max’ 
operation, taking the maximum of a square of 2x2 
neighbouring units of the feature map in this 
example.

So the pooling operation discards some data in 
favour of computational efficiency. 

As computers and deep network implementations 
become faster and more efficient, it should be 
less necessary to have pooling layers. This would 
generally improve network performance but 
reduce speed.

The normalisation operation
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The threshold and pool operations use max 
functions.

As a result, even if the convolution filter has a 
mean of zero, by the pool stage we have a mean 
activation above zero.

Furthermore, the range range of activations levels 
can be very different between feature maps, 
effectively weighting some feature maps to 
contribute more to the result than others.

Subsequent layers will have a problem here 
because subsequent filtering steps operate 
across multiple feature maps that will then 
contribute different amount to the output.



The normalisation operation

tmp = input-mean(input)   then   output=tmp/std(input)
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So the normalisation operation linearly scales the 
data to have a mean of zero activation for each 
feature map’s responses to all images.

The first step of normalisation is the subtract the 
mean response of each feature map from all 
responses, i.e. to zero-center the data.

The next step is to divide the activation of each 
layer by its standard deviation.

This makes the normalised data have a mean of 
zero and a standard deviation of one.


Normalisation is necessary for both theoretical 
and practical reasons

First, machine learning generally assumes that 
data reflects measurements of independent and 
identically-distributed (IID) variables. 
Normalisation forces identical distributions.


The normalisation operation

Training cycles
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Second, if the threshold activation function depends 
whether the unit’s response is above or below zero, 
having zero-mean inputs (after normalisation) and zero-
mean filters, about half of the units will be active and half 
inactive. This even split of activation is a very efficient 
way to store information in a network of limited size.


Third, having the same range for all feature maps and 
layers means the same threshold (zero) in the threshold 
function can be used throughout the network.

As a result of these consideration and other technical 
considerations, network performance increases far more 
quickly with normalisation, and final classification 
accuracy by the network is also higher.

• Filter/convolve: determine how well each group of nearby pixels 
matches each of a group of filters


• Threshold/rectify: introduce a nonlinearity by setting negative 
activations of units to zero


• Pool: Downsample the units to improve computational efficiency


• Normalise: Rescale responses of each feature map to have mean 
zero and standard deviation one, so each feature map contributes 
similarly to classification
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So, we have now done one layer of deep network 
operations on an image. Let’s summarise.




A learning network that transforms or extracts 
features using multiple nonlinear processing units, 
arranged in multiple layers with hierarchical 
organisation and different levels of representation 
and abstraction. 29

In a deep network, there are several layers 
performing similar operations and transformations 
of features, which all follow the same principles.

Subsequent layers generally use the same 
operations in the same way, but the filter/
convolve operation differs between the first layer 
and subsequent layers.

The filter/convolve operation (again)
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In the first layer, we are convolving a 2-dimensional input 
image with a two-dimensional filter to give a 2-
dimensional feature map.


The filter/convolve operation (again)
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But we do this for several filters, so the next layer 
is three-dimensional, with the third dimension 
corresponding to the number of filters used.




The filter/convolve operation (again)
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So in subsequent filter operations, the previous 
layer’s activation and the filter are three-
dimensional. 

This is even true for some input images: colour 
images are also treated as three dimensional, with 
the third dimension being the three colour 
channels.

So for colour images, the filters used are also 
three dimensional, with activation then requiring 
specific colours or different spatial responses in 
each colour.

The filter will span ALL the feature maps or colour 
channels in its input.


The filter’s weights in each of these channels are 
independent. So this would allow a filter that only 
responds to red edges (spatial structure in the red 
channel only), only to green edges (structure in 
the red channel only), or to edges of any colour 
(the same spatial structure in all three channels).


The filter/convolve operation (again)
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However, the result of a sum of the products of 
the filter and the corresponding part of the input 
is a single number regardless of the size or 
dimensionality of the inputs to the multiplication.

So, even with 3-dimensional inputs and filters, 
this sum gives the response at a single point in a 
single feature map of the next layer. Convolved 
over every position in the input, we then produce 
a 2-dimensional feature map showing the match 
between that 3-d filter and the 3-d input at every 
position.




The filter/convolve operation (again)
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We repeat this with several 3-dimensional filters 
acting on the same 3-dimensional input to give 
several 2-dimensional features maps.


The filter/convolve operation (again)
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We repeat this with several 3-dimensional filters 
acting on the same 3-dimensional input to give 
several 2-dimensional features maps.


The filter/convolve operation (again)
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5x5x6 filter

The resulting stack of feature maps is then the 
input of the next layer. Any filters used in the next 
layer will operate over ALL of these feature maps, 
6 maps in this example. Again, this one filter will 
produce a single 2-dimensional feature map.

Multiple filters will again produce a stack of 2-
dimensional feature maps for the next layer.


So we can see the black and white input image 
that we looked at earlier as a special case of the 
inputs to all layers: a black and white input image 
is like a single feature map, so the filters only 
need to be a single pixel deep to operate over all 
feature maps (i.e. one).



A learning network that transforms or extracts 
features using multiple nonlinear processing units, 
arranged in multiple layers with hierarchical 
organisation and different levels of representation 
and abstraction. 37

As we get higher up the network, these filters get 
harder to understand in two important ways. First, 
the filter shape crosses multiple independent 
feature maps. An edge detector applied to an 
image is easy enough to conceptualise: We can 
make images of the 2-dimensional image and the 
2-dimensional filter.

But such a 3-dimensional filter crossing multiple 
feature maps is harder to conceptualise.


Second, the input feature maps become more 
abstract. It gets very hard to conceptualise what 
feature is represented. 

So both the filter and the feature map become a 
pattern within a pattern within a pattern. It’s very 
hard to conceptualise these abstract, higher order 
patterns. Conveniently, we don’t need to: the 
computer does this for us.

Inverting an object 
recognition DCNN

38

But it is important to understand that deep 
networks have increasingly complex 
representations of objects in the images, over 
several network layers
To get a feel for what features are 
represented in different at different levels, we 
can modify the input image to find a version 
that produces the strongest possible 
response at each layer.
After training to classify the objects in natural 
images, successive layers respond best to 
increasingly complex relationships between 
pixels in the input image. These relationships 
follow the local correlations and patterns 
found in natural images

Shared weights
• Filters generally have a single set of weights for all positions in the 

feature map because:


• If a feature is useful to compute at one position, it is probably 
also useful at another position.


• The filter values are weights that need to be learned. Using one 
filter across all positions greatly reduces the number of weights, 
improving computational efficiency.


• The convolution operation is a very fast matrix function. If filters 
are not fixed, the convolution operation cannot be used.
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One filter is convolved with the previous feature 
map stack to give one new feature map.

It would also be possible for the filter to change at 
different positions in the feature map.

However, in artificial deep networks, generally a 
single filter is used across all positions, for three 
very good reasons.

AT END: We will see in our next class only the first 
of these constraints applies in biological deep 
networks.



A learning network that transforms or extracts 
features using multiple nonlinear processing units, 
arranged in multiple layers with hierarchical 
organisation and different levels of representation 
and abstraction. 40

As we get higher in the network, more spatial 
integration occurs as a result of repeated 
convolution and pooling, so the spatial 
dimensions of the feature maps shrink.

At the same time, the number of interesting 
feature combinations increases, so the feature 
maps become increasingly narrow, but stacked 
increasingly high.

In the end, some classification or decision must 
be made, which is the fundamental goal of the 
network.
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The last stage of the network, after several 
convolution layers, uses the activity pattern after 
the final convolutional layer for classification. 

To compare this activity pattern with previously-
seen patterns, the spatial relationships are first 
discarded, ‘flattening’ the last feature map into a 
line of independent units.

Each of these is connected to units that represent 
the possible candidate classifications, the labels 
that describe the input image.

Here we use a fully-connected layer to link every 
unit to every possible classification with different 
learned weights.

Essentially the labels see which top-layer pattern 
they were trained on resembles the current top-
layer response pattern most closely.

The softmax operation

42

So, the weights through our network will 
transform each input image into some ‘score’, 
reflecting the match between the top layer’s 
pattern of activation and the pattern of activation 
by previous examples of each category.

This SCORE must then be converted to a 
PROBABILITY that this input image falls into each 
category. 

This should take into account not just the score 
for one category, but also the scores for all other 
categories: the relative scores determine the 
probabilities.

This is almost always done with the normalised 
exponential function, or ‘softmax’.

That is, a constant e raised to the power of the 
score, divided by the sum of this exponent over 
all classification scores. As a result, the 
probabilities to sum up to one. 




The math is not particularly important to know, 
but note that, following an exponential function, 
an output layer score that is only slightly higher 
than another leads to a probability that is MUCH 
higher.
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So far, we have carefully ignored what filters are used in 
higher levels.

It is straightforward for the human researcher to design a 
simple filter, like an edge detector, to operate on an early 
layer, like the input image.

But when we get to more abstract filters operating over 
multiple feature maps whose responses are already hard to 
conceptualise, the optimal convolutional filter structures must 
be learned by experience.

Here, the nodes are pixels in a feature map, and the 
connections between these are filters.

So, to learn the optimal filter structure, the network is 
optimising the WEIGHTS of all these connections to improve 
task performance based on previous outcomes.


As we have seen, the filter is a limited group of connections, 
so the learning is much simpler than in a fully-connected 
network.

But just like learning in a fully-connected neural net, this uses 
back-propagation of error, a mathematically complex process 
that is notoriously difficult to understand and explain.

I will simplify as much as possible. Again, for this class, the 

Deep learning in artificial 
neural networks

• Useful for achieving tasks that are difficult to describe formally

• Difficult for computers, intuitive for humans


• A form of machine learning performing multiple sequential nonlinear feature 
transformations in hierarchical layers


• Between each feature map layer, a few simple operations

• Convolution checks each position’s match with a specific filter kernel

• Thresholding introduces a nonlinearity

• Pooling downsamples the image, taking the maximum

• Normalisation rescales responses so each feature map contributes similarly


• Final fully-connected layer links pattern of most abstracted, top-level features 
to most likely classification


• Softmax determines probability of each classification

• Match or conflict of expected and actual classifications used as the basis for 

backpropagation of error (complex mathematical process)

• Adjusts filter structure: link between layers, machine learning target44


