
Machine learning in Python
summer school

Lecture 1:

Neural networks

& convolutional networks

Ben Harvey
1

Welcome to our neural networks day.

This morning we will look at neural networks
and deep convolutional neural networks, a
type of machine learning network whose
design is inspired by the function of neurons
in the brain, and the structure of networks
among these neurons.

Why deep learning?
• Neural networks are a very powerful way to link an input

state with a desired output state (i.e. machine learning)

• Deep learning is particularly useful in tasks that are:

• Hard/impossible to describe using formal mathematical
rules

• BUT easy for humans to perform

• Intuitive or automatic

• Simulation of neural computation
2

Deep learning tasks

3

Image processing

Game opponents in complex games

Natural language processing

Simulation of biological neural systems

Deep learning approach

• Learn from experience (machine learning)

• Process inputs through a hierarchy of concepts

• Each concept defined by its relationship to simpler
concepts

• So, build complicated concepts out of simpler
concepts

4

This is what a human is doing when learning
about the world

SO the main conceptual inspiration for deep
learning is the brain. As we will see, the design of
deep learning systems has also followed the
function of the brain increasingly closely.

However, artificial neural networks simplify the
processes involved considerably for
computational efficiency.

Representations & features
• Machine learning performance depends on the representation of

the case to be classified

• What information the computer is given about the situation

• Each piece of input information is known as a feature

• The same feature can be represented in different formats

• Often easy to convert between formats

• The chosen format strongly affects the difficulty of the task

5

r = √ (x2 + y2)

θ = tan-1 (y / x)

A simple task like this can be solved by choosing
the right set of features, with minimal learning
necessary.

However, for many tasks, it is hard to know which
features or formats of the input are important in
determining the output.

And these may be high-level features that need to
be extracted first.

Deep learning aims to determine which formats of
their representations are optimal for solving their
task, through experience

Representations in

deep networks

• Useful features may need to be transformed or extracted first

• So deep networks have multiple representations

• Each is built from an earlier representation

• This can:

• Transform features to a different format before learning their links to the

output

• Extract complex features from simpler features

• Essentially multiple steps in a program

• Each layer can be seen as the computer’s memory state after executing

a set of instructions

• Deeper networks execute more instructions in sequence

• Just like a computer program, the individual steps are generally very simple

• Complex outcomes emerge from interactions between many simple

steps 6

Representations in

deep networks

7

Here we can see how this abstract description
might work in an oversimplified example of object
recognition.

The first layer just takes the colour of each pixel.

This is transformed to the edge representation in
the next layer by learning common relationships
between these pixels.

The edges are then transformed to corners and
contours by learning relationships between the
edges.

The next layer finds object parts by learning
common patterns of corners and contours.

These object parts are then transformed into
whole object representations by learning which
patterns of object parts correspond to which
object type.

We will return to the example of object
recognition many times

It’s an excellent example of a process that is
intuitive and automatic, but hard to formalise or
program.

It is also very useful for computers to do, so we
can find images on the internet without a human
labelling their content.

Finally, object recognition is a problem that has
now been solved, so we can really see how the
result works.

8

A quick note on notes.

All of these slides will be available online, but you
will find I use little text on my slides. This works
better in class, but is hard to study from or refer
back to.

I deal with this by giving you online slides also
contain notes with a fairly complete description of
what I say. This is very easy to make notes on
and study from. Please note that your other
lecturers won’t give you such extensive notes.

So please focus of listening and understanding
rather than taking notes.

You also have quite different backgrounds, and I
may assume you have some background that you
don’t. And as a native English speaker I
sometimes go a little fast.

So please stop me if I go over something too
quickly or you find you are missing something.

What is a deep network?

• A machine learning network that transforms or
extracts features using:

• Multiple nonlinear processing units

• Arranged in multiple layers with

• Hierarchical organisation

• Different levels of representation and abstraction

9

This is a very broad definition, so we will use an
example to see what it looks like

The example we will use in the first half of the
course is object recognition.

This has been a major goal for deep learning in
recent years, and is now largely solved, so we
can investigate in depth how this works.

Object recognition may sound like an easy
problem for computer vision, but…

Object recognition

Why is it so difficult?
10

The identity of any object has little
relationship to its impression on the
retina.
Here we see the result of a google image
search for pictures of cats.
This used Google’s artificial deep network
trained for object recognition.
For this network and also for human
vision, objects can be recognised from
different viewpoint and sizes, in different
positions, and with different lighting
conditions.
Also, examples of the same class of object
often look very different.
So we can’t recognise an object directly
from its impression on the eye or camera
sensor

The 20th century view of
object recognition

• Stage 1 builds a
representation of local
image features.

• Stage 2 builds a
representation of larger-
scale shapes and surfaces.

• Stage 3 matches shapes
and surfaces with stored
object representations-
recognition.

11

Note this is already a multi-layer, hierarchical
approach

12

The 20th century view of
object recognition

This was essentially the example we looked at
earlier, here with the input at the bottom.

This has many similarities with a deep
convolutional neural network, and is a good way
to start thinking about how they work.

However, there are important differences between
deep convolutional networks and what we see
here.

Most importantly, the 2nd hidden layer is shown
here to straightforwardly respond to corners and
contours: straightforward combinations of edges.

Likewise, the 3rd hidden layer is shown to
respond to object parts that could in turn be
combinations of corners and contours.

Indeed, many objects are built from parts, so
simplified parts that we recognise from all
angles might let us build an object
viewpoint-independent object
representation.
However, no one has ever made a program
that can do this for a large set of different
objects.

It seems that the features considered in a
model like this are too human.
When is a feature a corner and when is it a
curve? Is there something in between? Can we
define a corner, edge or surface so rigidly?
Essentially, all of these steps tend to limit the
network to recognise specific examples,
rather than generalise to all possible tables,
which is the goal here.

A deep network for object
recognition

A machine learning network that transforms or
extracts features using multiple nonlinear
processing units, arranged in multiple layers with
hierarchical organisation and different levels of
representation and abstraction.13

So we can see this network fulfils all the criteria of
a deep network.

It takes an input image and transforms its
features to extract the class of object the image
contains.

It is arranged in multiple layers, with one feeding
into the next, forming a hierarchy. This is all much
like the 20th-century idea.

The first layer represents the image pixels, with
minimal abstraction, while the last layer captures
object identity, which is highly abstract for a
computer system.

But what happens to get from one to the other is
very different from the 20th-century view.

The middle network layers do not respond to
concrete concepts that are easy for us to think
about, like corners and object parts. Instead they
respond to whatever transformation of features is
most beneficial for subsequently determining
object identity.

This transformation of features is not easy for a
human to conceptualise, as we will see.

The last part of this definition is ‘nonlinear
processing units’.

But what does nonlinear mean, why is that
necessary, and how is it achieved here?

Nonlinear functions

Y=A*X+B Y≠A*X+B
(Y is any other function of X)14

In a linear function, the output (Y) of the function
is simply the input (X) multiplied by a constant (A)
and then added to another constant (B). The
multiplier can be positive, negative or zero.

In a nonlinear function, there can be any other
relationship between X and Y.

There must still be a relationship, Y is still a
function of X, i.e. Y changes with X in some
predictable way.

So we can see that non-linear functions can do a
lot of things that linear functions can’t.

Why nonlinear functions?
Y = B + A1*X1 + A2*X2 + ... + Ap*Xp

15

But in the context of deep networks, there is a
more important problem with linear functions.

The many layers of a deep network repeatedly
perform functions on the output of previous
stages. By doing so, more and more features of
the input affect the output.

This example, joining together only two inputs,
gives an idea of the problem linear functions will
face.

Joining multiple linear functions (by addition or
multiplication) always results in a linear function
of those multiple inputs.

A deep network for object
recognition

A machine learning network that transforms or
extracts features using multiple nonlinear
processing units, arranged in multiple layers with
hierarchical organisation and different levels of
representation and abstraction.16

In this network, the inputs are the brightnesses of
each image pixel.

There is no way these can be multiplied and
summed together to give the likelihood this is an
image of a tree.

Because, as we have seen, there is remarkably
little relationship between an object’s identity and
the image it produces on the camera sensor.

Indeed, any operation that can be done with only
linear functions of the input can be
straightforwardly described by formal
mathematical rules, so is not a good use for deep
networks.

A machine learning network that transforms or
extracts features using multiple nonlinear
processing units, arranged in multiple layers with
hierarchical organisation and different levels of
representation and abstraction.17

In our example, we have a complex nonlinear
function with four operations or processing steps.
These are filter, threshold, pool and normalise.

These are very important to understand, so let’s look
at these steps in turn.

The output of one operation feeds into the next. The
repeating sequence of these four operations
effectively forms the layer.

The output of ALL these operations together forms
the input to the next repetition of these operations,
the next layer.

Note that this is described as a linear-nonlinear
layer, which may be a little confusing.

The nonlinear function threshold is very important,
but filter and normalise functions are linear. Pooling is
also nonlinear, but optional.

The filter/convolve operation

18

The filter or convolve operation is perhaps the most
computationally important.

At the first processing layer, the input is simply the brightness of
each pixel.

The convolution step looks for a pattern in a group of
neighbouring pixels that corresponds to the convolution filter.

For this filter, this would be dark on the left (low numbers) and light
on the right (high numbers).

In convolution, the weights in this filter are multiplied by a group of
input pixels with a particular position and the products of these
values are summed.

The result gives the match between the filter and a small part of
the input image.

If the source pixels follow this filter pattern (dark on the left, light
on the right), a high value will result. If the input area is all the
same brightness, the result will be zero. If the source pixels are
opposite to the filter (lighter on the left) the result will be negative.

Here, the match is poor: the pixel lightness on the left of the input
source area is higher than on the right, so the output destination
pixel gets assigned a low value.

Then, the filter is moved by one pixel in the input image to give a
value for the next output pixel.

All source positions are multiplied by the filter to fill in all the
destination pixels. The convolution function is usually
implemented using a single matrix operation over the whole input

The filter/convolve operation

19

The filter we just used is only one example to illustrate the
principle.

In fact, a large set of filters are used in parallel to produce multiple
maps of where their filter patterns are seen, often called feature
maps.

Each ‘pixel’ shown in each of these feature maps is no longer a
pixel in the image, it quantifies the match between the filter and
that position in the input image.

This is then the activity of a processing unit or artificial ‘neuron’

Here we see a set of eight larger filters with a range of different
orientations.

These have been set manually in this example, because we know
edge detectors with different orientations are an important early
stage of computer and human vision systems.

The pattern of weights within these filters are actually determined
by machine learning, though in the first layer the result is an edge
detector like this.

The size of these filters will also determine the spatial scale of the
feature we can detect. This size is set manually as a parameter of
the network layer.

Convolutional network (one layer)

‘Traditional’ (fully connected) neural network

Input layer

Hidden layers

Output layer

20

So, how is a convolutional network different from other
types of neural network?

Here we see a 1-dimensional convolutional network.
Activation of each upper layer node depends on the
product of the same filter (on the left) convolved with a
spatially limited set of lower layer nodes.

In an earlier design, a fully-connected neural net, each
node in a higher layer is connected to all nodes in the
previous layer, with no constraint on the spatial spread of
links between them. Again, the pattern of weights within
these links is learned.

In a convolutional network, results of convolution with
different filters are represented in different feature maps.

But in a fully-connected neural net the input to a higher
layer node comes from all low nodes in the previous
layer. There is then no need to test a filter at all positions.

So instead of mapping an input onto a feature map of
nodes in the higher layer, each single node in the higher
layer is a complete analysis of activity in the WHOLE

lower layer, with no spatial representation at all.

-In other words, a fully-connected network can find any
pattern in its inputs in one layer.

-A side effect of this is that the number of dimension in
the input is irrelevant in a fully connected network, so we
can simply view each network layer as 1-dimensional.

-Adding another layer will all the network to detect
higher-order patterns: patterns within the patterns that
are not present in the inputs themselves.

-This gives a lot of flexibility, and I would argue too
flexibility for a process like object recognition.

In a convolutional network, the constraint on the spatial
spread of links between layers is particularly useful
where the input has meaningful spatial relationship
between neighbouring nodes.

-The most obvious examples of meaningful spatial
relationships are in image processing, where the input
layer units are image pixels and the feature maps each
give the spatial distribution of the features described by

The threshold/rectification operation

Y = f(X) = max(0, X)
21

The nonlinearity is introduced by the threshold or
rectification operation.

The goal of this operation is to only activate the
output feature map if its value reaches a certain
level, or threshold.

If we use filters that have a mean of zero, the
threshold is typically zero.

The threshold/rectification operation

Y = f(X) = max(0, X)

Input X

O
ut

pu
t Y

an activation function using a rectified linear unit (ReLU)

22

So, for values below zero in the feature map, after
convolution, the output of the operation is zero.

For input values above zero, the output equals
the input.

So this introduces a simple nonlinearity around
zero.

Other ‘activation functions’ can be used to map
input to output, but this is the most common in
deep networks.

It is so common that the operation implementing
the activation function in deep networks is
typically just called ReLU, or a rectified linear unit.

The pooling operation

23

As a result of the filter operation, the response of
each unit depends on several neighbouring
inputs. So the units after filtering respond to a
certain area of the input image, and the activation
of neighbouring units will often be similar.

After several filter steps, each integrating inputs
over an area, each unit will respond very similarly
to an extensive area of the input.

So neighbouring units are representing very
similar information.

The pooling operation therefore downsamples the
units to improve computational efficiency.

The pooling operation

24

This pooling operation is typically a simple ‘max’
operation, taking the maximum of a square of 2x2
neighbouring units of the feature map in this
example.

So the pooling operation discards some data in
favour of computational efficiency.

As computers and deep network implementations
become faster and more efficient, it should be
less necessary to have pooling layers. This would
generally improve network performance but
reduce speed.

The normalisation operation

25

The threshold and pool operations use max
functions.

As a result, even if the convolution filter has a
mean of zero, by the pool stage we have a mean
activation above zero.

Furthermore, the range range of activations levels
can be very different between feature maps,
effectively weighting some feature maps to
contribute more to the result than others.

Subsequent layers will have a problem here
because subsequent filtering steps operate
across multiple feature maps that will then
contribute different amount to the output.

The normalisation operation

tmp = input-mean(input) then output=tmp/std(input)

26

So the normalisation operation linearly scales the
data to have a mean of zero activation for each
feature map’s responses to all images.

The first step of normalisation is the subtract the
mean response of each feature map from all
responses, i.e. to zero-center the data.

The next step is to divide the activation of each
layer by its standard deviation.

This makes the normalised data have a mean of
zero and a standard deviation of one.

Normalisation is necessary for both theoretical
and practical reasons

First, machine learning generally assumes that
data reflects measurements of independent and
identically-distributed (IID) variables.
Normalisation forces identical distributions.

The normalisation operation

Training cycles

Pr
ob

ab
ili

ty
 o

f c
or

re
ct

cl

as
si

fic
at

io
n

27

Input X

O
ut

pu
t Y

Second, if the threshold activation function depends
whether the unit’s response is above or below zero,
having zero-mean inputs (after normalisation) and zero-
mean filters, about half of the units will be active and half
inactive. This even split of activation is a very efficient
way to store information in a network of limited size.

Third, having the same range for all feature maps and
layers means the same threshold (zero) in the threshold
function can be used throughout the network.

As a result of these consideration and other technical
considerations, network performance increases far more
quickly with normalisation, and final classification
accuracy by the network is also higher.

• Filter/convolve: determine how well each group of nearby pixels
matches each of a group of filters

• Threshold/rectify: introduce a nonlinearity by setting negative
activations of units to zero

• Pool: Downsample the units to improve computational efficiency

• Normalise: Rescale responses of each feature map to have mean
zero and standard deviation one, so each feature map contributes
similarly to classification

28

So, we have now done one layer of deep network
operations on an image. Let’s summarise.

A learning network that transforms or extracts
features using multiple nonlinear processing units,
arranged in multiple layers with hierarchical
organisation and different levels of representation
and abstraction. 29

In a deep network, there are several layers
performing similar operations and transformations
of features, which all follow the same principles.

Subsequent layers generally use the same
operations in the same way, but the filter/
convolve operation differs between the first layer
and subsequent layers.

The filter/convolve operation (again)

30

In the first layer, we are convolving a 2-dimensional input
image with a two-dimensional filter to give a 2-
dimensional feature map.

The filter/convolve operation (again)

31

But we do this for several filters, so the next layer
is three-dimensional, with the third dimension
corresponding to the number of filters used.

The filter/convolve operation (again)

32

So in subsequent filter operations, the previous
layer’s activation and the filter are three-
dimensional.

This is even true for some input images: colour
images are also treated as three dimensional, with
the third dimension being the three colour
channels.

So for colour images, the filters used are also
three dimensional, with activation then requiring
specific colours or different spatial responses in
each colour.

The filter will span ALL the feature maps or colour
channels in its input.

The filter’s weights in each of these channels are
independent. So this would allow a filter that only
responds to red edges (spatial structure in the red
channel only), only to green edges (structure in
the red channel only), or to edges of any colour
(the same spatial structure in all three channels).

The filter/convolve operation (again)

33

However, the result of a sum of the products of
the filter and the corresponding part of the input
is a single number regardless of the size or
dimensionality of the inputs to the multiplication.

So, even with 3-dimensional inputs and filters,
this sum gives the response at a single point in a
single feature map of the next layer. Convolved
over every position in the input, we then produce
a 2-dimensional feature map showing the match
between that 3-d filter and the 3-d input at every
position.

The filter/convolve operation (again)

34

We repeat this with several 3-dimensional filters
acting on the same 3-dimensional input to give
several 2-dimensional features maps.

The filter/convolve operation (again)

35

We repeat this with several 3-dimensional filters
acting on the same 3-dimensional input to give
several 2-dimensional features maps.

The filter/convolve operation (again)

36

5x5x6 filter

The resulting stack of feature maps is then the
input of the next layer. Any filters used in the next
layer will operate over ALL of these feature maps,
6 maps in this example. Again, this one filter will
produce a single 2-dimensional feature map.

Multiple filters will again produce a stack of 2-
dimensional feature maps for the next layer.

So we can see the black and white input image
that we looked at earlier as a special case of the
inputs to all layers: a black and white input image
is like a single feature map, so the filters only
need to be a single pixel deep to operate over all
feature maps (i.e. one).

A learning network that transforms or extracts
features using multiple nonlinear processing units,
arranged in multiple layers with hierarchical
organisation and different levels of representation
and abstraction. 37

As we get higher up the network, these filters get
harder to understand in two important ways. First,
the filter shape crosses multiple independent
feature maps. An edge detector applied to an
image is easy enough to conceptualise: We can
make images of the 2-dimensional image and the
2-dimensional filter.

But such a 3-dimensional filter crossing multiple
feature maps is harder to conceptualise.

Second, the input feature maps become more
abstract. It gets very hard to conceptualise what
feature is represented.

So both the filter and the feature map become a
pattern within a pattern within a pattern. It’s very
hard to conceptualise these abstract, higher order
patterns. Conveniently, we don’t need to: the
computer does this for us.

Inverting an object
recognition DCNN

38

But it is important to understand that deep
networks have increasingly complex
representations of objects in the images, over
several network layers
To get a feel for what features are
represented in different at different levels, we
can modify the input image to find a version
that produces the strongest possible
response at each layer.
After training to classify the objects in natural
images, successive layers respond best to
increasingly complex relationships between
pixels in the input image. These relationships
follow the local correlations and patterns
found in natural images

Shared weights
• Filters generally have a single set of weights for all positions in the

feature map because:

• If a feature is useful to compute at one position, it is probably
also useful at another position.

• The filter values are weights that need to be learned. Using one
filter across all positions greatly reduces the number of weights,
improving computational efficiency.

• The convolution operation is a very fast matrix function. If filters
are not fixed, the convolution operation cannot be used.

39

One filter is convolved with the previous feature
map stack to give one new feature map.

It would also be possible for the filter to change at
different positions in the feature map.

However, in artificial deep networks, generally a
single filter is used across all positions, for three
very good reasons.

AT END: We will see in our next class only the first
of these constraints applies in biological deep
networks.

A learning network that transforms or extracts
features using multiple nonlinear processing units,
arranged in multiple layers with hierarchical
organisation and different levels of representation
and abstraction. 40

As we get higher in the network, more spatial
integration occurs as a result of repeated
convolution and pooling, so the spatial
dimensions of the feature maps shrink.

At the same time, the number of interesting
feature combinations increases, so the feature
maps become increasingly narrow, but stacked
increasingly high.

In the end, some classification or decision must
be made, which is the fundamental goal of the
network.

41

The last stage of the network, after several
convolution layers, uses the activity pattern after
the final convolutional layer for classification.

To compare this activity pattern with previously-
seen patterns, the spatial relationships are first
discarded, ‘flattening’ the last feature map into a
line of independent units.

Each of these is connected to units that represent
the possible candidate classifications, the labels
that describe the input image.

Here we use a fully-connected layer to link every
unit to every possible classification with different
learned weights.

Essentially the labels see which top-layer pattern
they were trained on resembles the current top-
layer response pattern most closely.

The softmax operation

42

So, the weights through our network will
transform each input image into some ‘score’,
reflecting the match between the top layer’s
pattern of activation and the pattern of activation
by previous examples of each category.

This SCORE must then be converted to a
PROBABILITY that this input image falls into each
category.

This should take into account not just the score
for one category, but also the scores for all other
categories: the relative scores determine the
probabilities.

This is almost always done with the normalised
exponential function, or ‘softmax’.

That is, a constant e raised to the power of the
score, divided by the sum of this exponent over
all classification scores. As a result, the
probabilities to sum up to one.

The math is not particularly important to know,
but note that, following an exponential function,
an output layer score that is only slightly higher
than another leads to a probability that is MUCH
higher.

43

So far, we have carefully ignored what filters are used in
higher levels.

It is straightforward for the human researcher to design a
simple filter, like an edge detector, to operate on an early
layer, like the input image.

But when we get to more abstract filters operating over
multiple feature maps whose responses are already hard to
conceptualise, the optimal convolutional filter structures must
be learned by experience.

Here, the nodes are pixels in a feature map, and the
connections between these are filters.

So, to learn the optimal filter structure, the network is
optimising the WEIGHTS of all these connections to improve
task performance based on previous outcomes.

As we have seen, the filter is a limited group of connections,
so the learning is much simpler than in a fully-connected
network.

But just like learning in a fully-connected neural net, this uses
back-propagation of error, a mathematically complex process
that is notoriously difficult to understand and explain.

I will simplify as much as possible. Again, for this class, the

Deep learning in artificial
neural networks

• Useful for achieving tasks that are difficult to describe formally

• Difficult for computers, intuitive for humans

• A form of machine learning performing multiple sequential nonlinear feature
transformations in hierarchical layers

• Between each feature map layer, a few simple operations

• Convolution checks each position’s match with a specific filter kernel

• Thresholding introduces a nonlinearity

• Pooling downsamples the image, taking the maximum

• Normalisation rescales responses so each feature map contributes similarly

• Final fully-connected layer links pattern of most abstracted, top-level features
to most likely classification

• Softmax determines probability of each classification

• Match or conflict of expected and actual classifications used as the basis for

backpropagation of error (complex mathematical process)

• Adjusts filter structure: link between layers, machine learning target44

