
Lecture 2: Model Fit and
Linear Regression

Utrecht Summer school on
Machine Learning with Python

July 2024

So far…

• Basic concepts of machine learning
• Types of learning
• Regression, classification
• Exploratory data analysis

In this lecture

• What is a model?
• Linear regression model
• Data splits
• Feature engineering
• Regularization

What is a model?

In supervised learning, there is a dependent variable (Y), which is the
one you are trying to explain/predict, and one or more independent
variables (X) that are related to it.

You can express the relationship, such as:

 Y = f(X) + ϵ

What is a model?

 Y = f(X) + ϵ

• Y: variable to predict (observed outcome)
• f(X): a function of observed predictors (independent variables)
• ϵ is a random error with mean zero

• Statistical learning: learns f using data

Why do we estimate f?

• Prediction: If we can produce a good estimate for f we can
make accurate predictions for the response Y, based on a
new value of X
• Inference: Alternatively, we may also be interested in how

the X (the predictors) affect the Y (the outcome)
• Which particular predictors actually affect the response?
• Is the relationship positive or negative?
• Is the relationship a simple linear one or is it more complicated

etc.?

Linear
Regression

Linear
Regression

190

Linear
Regression

190

Linear
Regression

190

Linear
Regression

Supervised model
• Data has right answers (Y)
• y = ouput/target variable
• y is the car weight

The model learned the relationship from
some input:
• x = input variables/predictors
• x is the horsepower
(xi, yi) = single training example

Model is f(cars) such that
Weight_car = f(cars) + ϵ

190

How do we estimate f?

• We will assume we have observed a set of training data. Training set
contains input variables (features) X and one target variable Y
• {(X1, Y1), (X2, Y2), …, (Xn, Yn)}

• We use the training data and a statistical method to estimate f
• e.g. Weight_car = f(cars) + ϵ

• We have a set of test data to make predictions ŷ

How do we estimate f?

Statistical Learning Methods:
• Parametric Methods: Make some assumption about the functional

form of f
• e.g. f(cars) = β0 + β1⋅cars
• Non-parametric Methods: They do not make explicit assumptions

about the functional form of f
• e.g. The price of car is the average of the 3 points in our dataset with

the closest number of Cars.

Linear Regression

Linear regression

• Fits a line, assumes linear relationship between the predictors and the outcome.

• f = β0 + β1⋅X + ϵ

• β0 in the intercept term -> the expected value of Y when X = 0,
• β1 is the slope—the average increase in Y associated with a one-unit increase in X
• β0, β1 are also called parameters or weights

• The error term is for what we miss with this simple model: the true relationship is
probably not linear, there may be other variables that cause variation in Y , and
there may be measurement error.

How well the line fits the data?

f = β0 + β1⋅X + ϵ
ŷi = f (xi)

We need to find β0 and β1 such that ŷ is
close to yi for all (xi, yi)

How well this line fits the data?

How well the line fits the data?

f = β0 + β1⋅X + ϵ
ŷi = f (xi)

Find β0 and β1 such that ŷ is close to yi for all
(xi, yi)

(yi - ŷi)2 is the error for one of the observations

How well the line fits the data?

Cost function

• How well the line fits the data?
• Residual sum of squares

Example

f = β0 + β1⋅X
f = 984 + 19,07* horsepower

Interpretation

• 0.747: This means that
approximately 74.7% of the
variance in the dependent
variable (weight) can be
explained by the independent
variable (horsepower).
• An R-squared value closer to 1

indicates a better fit of the
model.

Interpretation

• const: The intercept of the regression line.
• Here, the intercept is 984, which means when horsepower is 0, the

weight is expected to be 985 units.
• horsepower: The slope of the regression line. Here, the slope is 19.07,

meaning that for each additional unit of horsepower, the weight
increases by 19.07 units on average.

Example

f = β0 + β1⋅X
f = 984 + 19,07* horsepower

If a new observation arrives with
horsepower = 100:

f (100) = 984 + 19,07* 100 = 2891

Least squares linear regression

• Goal: Find the parameters θ (same as β) that minimise the loss/cost
function/MSE
• L(θ) = Cost(θ)=MSE(θ) =

How to select θ?

• Goal: Minimize MSE L(θ) =
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0
• θ0 = 0, θ1 = 1

• Goal: Minimize MSE L(θ) =
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0
• θ0 = 0, θ1 = 0.5

How to select θ?

• Goal: Minimize MSE L(θ) =
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0
• θ0 = 0, θ1 = 0

How to select θ?

Gradient descent

• Goal: Minimize MSE L(θ) =
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0

The cost function is convex

How to find the optimal θ?

• Find the ones that minimize the cost function
• Use gradient descent -> optimization technique used in many

machine learning methods

Drop a marble in the curve

Cost function

• IniZate parameters θ randomly
• Predict hθ (x) (i.e., y ̂) and calculate L(θ)
• Change θ using a small value to move to a lower point in the curve
• Repeat unZl near minimum

Cost function

Cost function

How do we do this?

• Calculus!
- We want to know where is “down”in the curve, i.e. the gradient of
the curve
• In practice: For each coefficient in the model, θj

• New θj = θj − α !"(θ)
!θ%

 α is positive = learning rate(a small value, can be adaptive)

How do we do this?

New θj = θj − α !"(θ)
!θ%

if !"(θ)
!θ% > 0, then

New θj = θj − <positive number>
θj will decrease

if !"(θ)!θ% < 0, then
New θj = θj − <negative number>
θj will increase

10 minutes break

Data splits and cross
valida3on

Data splits

• Okay so we learn this function on our data.
• Are we sure that this is going to be effective on future data?

• We need to split data to evaluate the performance of the model.

Supervised Learning – General Workflow

Training data
Machine
learning

algorithm
Trained model Predictions/Evaluation

Test data

Why splitting data?

• We cannot use the same data to evaluate the generalization error
• If we use some data to compare between models, the MSE of the

best model is not an unbiased estimate of the generalization error.
We need a new dataset (the test data) to estimate the generalization
error.

Why splitting data?

• Why? To avoid overfitting (model that is only working well on
particular data and can’t generalise)
• Suppose that you’re a teacher writing an exam for some students

[models]. If you want to evaluate their skills, will you give them
exercises [observations] that they have already seen and solved [train
set], and that they still have on their desks, or new exercises, inspired
by what they learned, but different from them? [different set] (jpl,
stackoverflow)

Why splitting data?

• Compare statistical methods (e.g., linear regression vs knn regression)
to find which fits the best on my data
• Compare models with different predictors included (e.g. linear

regression including predictors [X1, X2] vs [X1, X2, X3])
• Comparing models with different hyperparameters (e.g. KNN

regression using the closest 3 vs 10 neighbours) to find the optimal
parameters

Train/dev/test

General framework
• Training dataset: To train the models
• Validahon dataset: To select the best model
• Test dataset: To eshmate the generalizahon error of the best model

• Oien, the terms “validahon set”, “dev set”, “test set” are used
interchangeably

Train/dev/test

• Training data: Observations used to train (“fit”, ”estimate”) 𝑓(𝒙)
• Validation data (or “dev” data): New observations from the same

source as training data
• Used several times to select model complexity
• Test data: New observations from the intended prediction situation
• A very common split is 70% training set, 10% validation, 20% test

Train Val Test

Drawbacks of train/dev/test

• Fixed Split: The performance of the model might heavily depend
on how the data is split. If the split is not representative, the model
may perform poorly in practice
• Overfitting to Validation Set: Hyperparameter tuning using the

validation set can lead to overfitting to this specific set, reducing
the model's ability to generalize to new data
• Reduced Training Data: Splitting the data into train, validation, and

test sets reduces the amount of data available for training. This can
be particularly problematic for small datasets, where having more
training data can significantly improve model performance

K-fold cross validaKon

• “Cross-validation” often used to replace single dev set approach;
• Perform the train/dev split several times, and average the result
• When K = 1, “leave-one-out”;
• Usually K = 5 or K = 10

K-fold cross validation

Do not
touch until

the end

Average performance over folds

K-fold cross validation

MSE-split1: 3.12

MSE-split2: 4.12

MSE-split3: 3.62

MSE-split4: 2.65

MSE-split5: 2.68

Mean MSE= 16.19/5 = 3.238

Feature Selection

Polynomials

weight= β0 + β1⋅ horsepower + β2⋅ horsepower2 weight= β0 + β1⋅ horsepower + β2⋅ horsepower2 + β3⋅ horsepower3

More features

• What if I decide to include more predictors in the model?

• weight=β0 + β1⋅ horsepower + β2⋅ displacement
• weight=β0 + β1⋅ horsepower + β2⋅ displacement + β3⋅ acceleration
• …

Features

• Choosing the right features has a great impact on the models’
performance
• f(x) = β0 + β1 x1 + β2x2
• f(x) = β0 + β1 x1 + β2x2 + β3x1 x2

How many variables?

• Too few variables -> Underfitting
• Too many variables -> Overfitting

Feature selection I: Best subset selection

• Try all the different combinations of predictors and choose the one
with the best performance
• Computationally not feasible to check all the different combinations

of features

if x1, x2, x3 –then try
• f(x1), f(x2), f(x3),
• f(x1, x2), f(x2, x3), f(x1, x3),
• f(x1, x2, x3)

Feature selecKon II: Forward selecKon

• We begin with the null model—a model that contains an intercept
but no predictors
• We then fit p simple linear regressions (p is the number of features)
• Add to the null model the variable that results in the lowest RSS.
• We then add to that model the variable that results in the lowest RSS

for the new two-variable model.
• This approach is continued until some stopping rule is satisfied

Feature selection II: Forward selection

if x1, x2, x3 –then try :
• f(x1), f(x2), f(x3),
• Find the variable with the lowest RSS (e.g., x1)

• Keep x1 and add one more: f(x1, x2), f(x1, x3),
• Find the model with the lowest RSS (e.g., x1, x2)
• f(x1, x2, x3)

• Until all remaining variables to consider have a p-value larger than some
specified threshold, if added to the model.

Feature selection III: Backward selection

• We start with all variables in the model
• Remove the variable with the largest p-value—that is, the variable

that is the least statistically significant
• The new (p − 1)-variable model is fit, and the variable with the largest

p-value is removed.
• This procedure continues until a stopping rule is reached.
• For instance, we may stop when all remaining variables have a p-

value below some threshold.

Feature selection - number of models

• Number of models fitted at each step, example for a dataset with 20
predictors:

Regulariza3on

Regularization

• A very flexible model (one with many coefficients) is like a kid in
candyshop with a platinum credit card: It goes around buying all the
coefficients it wants and never stops.
• Idea: Tell the model not to go overboard with the complexity. We set

up the correct complexity as the one that minimizes MSE in the
validation data.

Penalized (regularized) regression: buying
coefficients on a budget

• We want to fit the training data (estimate the weights of the
coefficients)
• Make the model behave ‘regularly’ by penalizing the purchase of ‘too

many’ coefficients
• Extremely efficient way to approximately solve the best subset

problem: Variable selection + regression in one step
• Often yields very good results
• If you are interested in prediction and not inference (i.e. if identifying

the relevant features is not a primary goal of the analysis),
regularization will usually be better

Regularization: buying coefficients on a
budget
• Usually, find the θj (or sometimes we use the notation βj) that minimizes
• L(θ) = MSE = !

"
 ∑#$!" (𝑦𝑖 − ℎθ (xi))2

• Now, find the θj that minimizes L(θ) = MSE + λ ⋅ Penalty

where the penalty is:
• ∑%&' |θ𝑗|-> (L1, Lasso) -> Tends to set some coefficients to zero (great for

interpretability)
• ∑%&'θj

2-> (L2, Ridge) -> Tends to keep all coefficients

How to select λ – option 1

OpPon 1:
• Divide the data into train/val/test
• Create models using different λ, fit them using the train data.
• Calculate MSE in the validaPon data and select the best model.
• EsPmate generalizaPon error for the best model in the test dataset.

How to select λ – option 2
Option 2 (better):
• Divide the data into train/test
• Use cross-validation, for each k split of train –> train/val:
• - Fit models using different λ.
• - Calculate MSE in the validation dataset
• Select the model with the minimum average MSE.
• Estimate generalization error in the test dataset

Regularization in Python

• alpha in scikit-learn is equivalent to lambda

Regularization in Python

• alpha in scikit-learn is equivalent to lambda

Summary

Conclusion

• Linear regression is a parametric model, and assumes linear
relationship between predictors and target variable
• Split data or use cross validation in your problem
• It is better to standardize the predictors

Conclusion

• By using feature selection or regularization, we can obtain better
prediction accuracy and model interpretability
• Feature selection includes best subset, forward and backward

selection
• Best subset selection performs best, but it comes at a prize
• Regularization includes LASSO and Ridge
• LASSO shrinks unimportant parameters to truly zero, while Ridge

shrinks them to small values

Practical 2

