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So far…

• Basic concepts of machine learning 
• Types of learning
• Regression, classification
• Exploratory data analysis



In this lecture

• What is a model?
• Linear regression model
• Data splits
• Feature engineering
• Regularization



What is a model?

In supervised learning, there is a dependent variable (Y), which is the 
one you are trying to explain/predict, and one or more independent 
variables (X) that are related to it.

You can express the relationship, such as:
      

 Y = f(X) + ϵ 



What is a model?

    Y = f(X) + ϵ 

• Y: variable to predict (observed outcome)
• f(X): a function of observed predictors (independent variables)
• ϵ is a random error with mean zero

• Statistical learning: learns f using data



Why do we estimate f?

• Prediction: If we can produce a good estimate for f  we can 
make accurate predictions for the response Y, based on a 
new value of X
• Inference: Alternatively, we may also be interested in how 

the X (the predictors) affect the Y (the outcome)
• Which particular predictors actually affect the response?
• Is the relationship positive or negative?
• Is the relationship a simple linear one or is it more complicated 

etc.?
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Linear 
Regression

Supervised model
• Data has right answers (Y)
• y = ouput/target variable
• y is the car weight

The model learned the relationship from 
some input:
• x = input variables/predictors
• x is the horsepower
(xi, yi) = single training example

Model is f(cars) such that
Weight_car = f(cars) + ϵ

190



How do we estimate f?

• We will assume we have observed a set of training data. Training set 
contains input variables (features) X and one target variable Y
• {(X1, Y1), (X2, Y2), …, (Xn, Yn)}

• We use the training data and a statistical method to estimate f
• e.g. Weight_car = f(cars) + ϵ

• We have a set of test data to make predictions ŷ



How do we estimate f?

Statistical Learning Methods:
• Parametric Methods: Make some assumption about the functional 

form of f
• e.g. f(cars) = β0 + β1⋅cars
• Non-parametric Methods: They do not make explicit assumptions 

about the functional form of f
• e.g. The price of car is the average of the 3 points in our dataset with 

the closest number of Cars.



Linear Regression



Linear regression

• Fits a line, assumes linear relationship between the predictors and the outcome.

• f = β0 + β1⋅X + ϵ

• β0 in the intercept term -> the expected value of Y when X = 0,
• β1 is the slope—the average increase in Y associated with a one-unit increase in X
• β0, β1 are also called parameters or weights

• The error term is for what we miss with this simple model: the true relationship is 
probably not linear, there may be other variables that cause variation in Y , and 
there may be measurement error. 



How well the line fits the data?

f = β0 + β1⋅X + ϵ
ŷi = f (xi)

We need to find β0 and β1 such that ŷ is 
close to yi for all (xi, yi)

How well this line fits the data?



How well the line fits the data?

f = β0 + β1⋅X + ϵ
ŷi = f (xi)

Find β0 and β1 such that ŷ is close to yi for all 
(xi, yi)

(yi  - ŷi )2 is the error for one of the observations

How well the line fits the data?



Cost function

• How well the line fits the data?
• Residual sum of squares



Example

f = β0 + β1⋅X 
f = 984 + 19,07* horsepower 



Interpretation

• 0.747: This means that 
approximately 74.7% of the 
variance in the dependent 
variable (weight) can be 
explained by the independent 
variable (horsepower). 
• An R-squared value closer to 1 

indicates a better fit of the 
model.



Interpretation

• const: The intercept of the regression line. 
• Here, the intercept is 984, which means when horsepower is 0, the 

weight is expected to be 985 units.
• horsepower: The slope of the regression line. Here, the slope is 19.07, 

meaning that for each additional unit of horsepower, the weight 
increases by 19.07 units on average.



Example

f = β0 + β1⋅X 
f = 984 + 19,07* horsepower

If a new observation arrives with 
horsepower = 100:

f (100) = 984 + 19,07* 100 = 2891



Least squares linear regression

• Goal: Find the parameters θ (same as β) that minimise the loss/cost
function/MSE
•  L(θ) = Cost(θ)=MSE(θ) = 



How to select θ?

• Goal: Minimize MSE L(θ) = 
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0
• θ0 = 0, θ1 = 1



• Goal: Minimize MSE L(θ) = 
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0
• θ0 = 0, θ1 = 0.5

How to select θ?



• Goal: Minimize MSE L(θ) = 
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0
• θ0 = 0, θ1 = 0

How to select θ?



Gradient descent

• Goal: Minimize MSE L(θ) = 
• Let’s assume a simple model f(xi) = θ1 * xi where intercept is 0



The cost function is convex 



How to find the optimal θ?

• Find the ones that minimize the cost function
• Use gradient descent -> optimization technique used in many 

machine learning methods 



Drop a marble in the curve



Cost function

• IniZate parameters θ randomly 
• Predict hθ (x) (i.e., y ̂) and calculate L(θ)
• Change θ using a small value to move to a lower point in the curve
• Repeat unZl near minimum



Cost function



Cost function 



How do we do this?

• Calculus!
- We want to know where is “down”in the curve, i.e. the gradient of 
the curve
• In practice: For each coefficient in the model, θj

•  New θj = θj − α !"(θ)
!θ%

 α is positive = learning rate(a small value, can be adaptive) 



How do we do this?

New θj = θj − α !"(θ)
!θ%

if !"(θ)
!θ%  > 0, then

New θj = θj − <positive number>
θj will decrease

if !"(θ)!θ%  < 0, then
New θj = θj − <negative number>
θj will increase



10 minutes break



Data splits and cross 
valida3on



Data splits

• Okay so we learn this function on our data. 
• Are we sure that this is going to be effective on future data?

• We need to split data to evaluate the performance of the model.



Supervised Learning – General Workflow

Training data
Machine 
learning 

algorithm
Trained model Predictions/Evaluation

Test data



Why splitting data?

• We cannot use the same data to evaluate the generalization error
• If we use some data to compare between models, the MSE of the 

best model is not an unbiased estimate of the generalization error. 
We need a new dataset (the test data) to estimate the generalization 
error.



Why splitting data?

• Why? To avoid overfitting (model that is only working well on 
particular data and can’t generalise)
• Suppose that you’re a teacher writing an exam for some students 

[models]. If you want to evaluate their skills, will you give them 
exercises [observations] that they have already seen and solved [train 
set], and that they still have on their desks, or new exercises, inspired 
by what they learned, but different from them? [different set] (jpl, 
stackoverflow)



Why splitting data?

• Compare statistical methods (e.g., linear regression vs knn regression) 
to find which fits the best on my data
• Compare models with different predictors included (e.g. linear 

regression including predictors [X1, X2] vs [X1, X2, X3] )
• Comparing models with different hyperparameters (e.g. KNN 

regression using the closest 3 vs 10 neighbours) to find the optimal 
parameters



Train/dev/test

General framework
• Training dataset: To train the models
• Validahon dataset: To select the best model
• Test dataset: To eshmate the generalizahon error of the best model

• Oien, the terms “validahon set”, “dev set”, “test set” are used 
interchangeably



Train/dev/test

• Training data: Observations used to train (“fit”, ”estimate”) 𝑓(𝒙) 
• Validation data (or “dev” data): New observations from the same 

source as training data 
• Used several times to select model complexity
• Test data: New observations from the intended prediction situation 
• A very common split is 70% training set, 10% validation, 20% test 

Train Val Test



Drawbacks of train/dev/test 

• Fixed Split: The performance of the model might heavily depend 
on how the data is split. If the split is not representative, the model 
may perform poorly in practice
• Overfitting to Validation Set: Hyperparameter tuning using the 

validation set can lead to overfitting to this specific set, reducing 
the model's ability to generalize to new data
• Reduced Training Data: Splitting the data into train, validation, and 

test sets reduces the amount of data available for training. This can 
be particularly problematic for small datasets, where having more 
training data can significantly improve model performance



K-fold cross validaKon

• “Cross-validation” often used to replace single dev set approach; 
• Perform the train/dev split several times, and average the result 
• When K = 1, “leave-one-out”; 
• Usually K = 5 or K = 10 



K-fold cross validation

Do not 
touch until 

the end

Average performance over folds



K-fold cross validation

MSE-split1: 3.12

MSE-split2: 4.12

MSE-split3: 3.62

MSE-split4: 2.65

MSE-split5: 2.68

Mean MSE= 16.19/5 = 3.238 



Feature Selection



Polynomials

weight= β0 + β1⋅ horsepower + β2⋅ horsepower2 weight= β0 + β1⋅ horsepower + β2⋅ horsepower2 + β3⋅ horsepower3 



More features

• What if I decide to include more predictors in the model?

• weight=β0 + β1⋅ horsepower + β2⋅ displacement
• weight=β0 + β1⋅ horsepower + β2⋅ displacement + β3⋅ acceleration
• …



Features

• Choosing the right features has a great impact on the models’ 
performance
• f(x) = β0 + β1 x1 + β2x2 
• f(x) = β0 + β1 x1 + β2x2 + β3x1 x2



How many variables?

• Too few variables -> Underfitting
• Too many variables -> Overfitting



Feature selection I: Best subset selection 

• Try all the different combinations of predictors and choose the one
with the best performance
• Computationally not feasible to check all the different combinations

of features

if x1, x2, x3 –then try 
• f(x1), f(x2), f(x3), 
• f(x1, x2), f(x2, x3), f(x1, x3), 
• f(x1, x2, x3)



Feature selecKon II: Forward selecKon

• We begin with the null model—a model that contains an intercept 
but no predictors
• We then fit p simple linear regressions (p is the number of features)
• Add to the null model the variable that results in the lowest RSS. 
• We then add to that model the variable that results in the lowest RSS 

for the new two-variable model. 
• This approach is continued until some stopping rule is satisfied



Feature selection II: Forward selection

if x1, x2, x3 –then try :
• f(x1), f(x2), f(x3), 
• Find the variable with the lowest RSS (e.g., x1)

• Keep x1 and add one more: f(x1, x2), f(x1, x3), 
• Find the model with the lowest RSS (e.g., x1, x2)
• f(x1, x2, x3)

• Until all remaining variables to consider have a p-value larger than some 
specified threshold, if added to the model.



Feature selection III: Backward selection

• We start with all variables in the model
• Remove the variable with the largest p-value—that is, the variable 

that is the least statistically significant
• The new (p − 1)-variable model is fit, and the variable with the largest 

p-value is removed. 
• This procedure continues until a stopping rule is reached. 
• For instance, we may stop when all remaining variables have a p-

value below some threshold.



Feature selection - number of models

• Number of models fitted at each step, example for a dataset with 20 
predictors:



Regulariza3on



Regularization

• A very flexible model (one with many coefficients) is like a kid in 
candyshop with a platinum credit card: It goes around buying all the 
coefficients it wants and never stops. 
• Idea: Tell the model not to go overboard with the complexity. We set 

up the correct complexity as the one that minimizes MSE in the 
validation data. 



Penalized (regularized) regression: buying 
coefficients on a budget 

• We want to fit the training data (estimate the weights of the 
coefficients) 
• Make the model behave ‘regularly’ by penalizing the purchase of ‘too 

many’ coefficients 
• Extremely efficient way to approximately solve the best subset 

problem: Variable selection + regression in one step 
• Often yields very good results 
• If you are interested in prediction and not inference (i.e. if identifying 

the relevant features is not a primary goal of the analysis), 
regularization will usually be better 



Regularization: buying coefficients on a 
budget 
• Usually, find the θj (or sometimes we use the notation βj ) that minimizes
•  L(θ) = MSE = !

"
 ∑#$!" (𝑦𝑖 − ℎθ (xi))2

• Now, find the θj that minimizes L(θ) = MSE + λ ⋅ Penalty 

where the penalty is: 
• ∑%&' |θ𝑗|-> (L1, Lasso) -> Tends to set some coefficients to zero (great for 

interpretability) 
• ∑%&'θj

2-> (L2, Ridge) -> Tends to keep all coefficients



How to select λ – option 1

OpPon 1: 
• Divide the data into train/val/test 
• Create models using different λ, fit them using the train data. 
• Calculate MSE in the validaPon data and select the best model. 
• EsPmate generalizaPon error for the best model in the test dataset. 



How to select λ – option 2
Option 2 (better): 
• Divide the data into train/test 
• Use cross-validation, for each k split of train –> train/val: 
• - Fit models using different λ. 
• - Calculate MSE in the validation dataset 
• Select the model with the minimum average MSE. 
• Estimate generalization error in the test dataset 



Regularization in Python

• alpha in scikit-learn is equivalent to lambda



Regularization in Python

• alpha in scikit-learn is equivalent to lambda



Summary



Conclusion

• Linear regression is a parametric model, and assumes linear 
relationship between predictors and target variable
• Split data or use cross validation in your problem
• It is better to standardize the predictors



Conclusion

• By using feature selection or regularization, we can obtain better 
prediction accuracy and model interpretability
• Feature selection includes best subset, forward and backward 

selection
• Best subset selection performs best, but it comes at a prize
• Regularization includes LASSO and Ridge
• LASSO shrinks unimportant parameters to truly zero, while Ridge 

shrinks them to small values



Practical 2


